

Engine Dynamometer Testing of a Non-Road, Tier III Diesel Operated on Soy and Animal Based Biodiesel

Mark Burnitzki¹, Don Chernich¹, Tullie Flower¹, Robert Ianni¹, Harlan Quan¹, Roelof Riemersma¹, Wayne Sobieralski¹, Michael Veridiano¹, James Guthrie², Alexander Mitchell², Robert Okamoto², Marcie Pullman², Tom Durbin³.

- California Air Resources Board, Mobile Source Operations Division-Stockton Laboratory, 2769 Teepnee Drive. Stockton. CA. 95205
- 2769 Teepee Drive, Stockton, CA. 95205 2. California Air Resources Board, Stationary Source Division,
- 1001 I Street, Sacramento, CA. 95814
 3.University of California Riverside, CE-CERT,
 1084 Columbia Avenue, Riverside, CA 92507

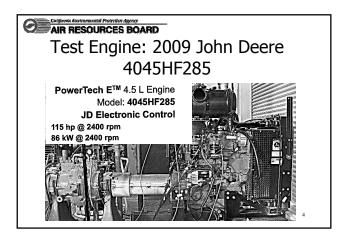
December 2010 Sacramento, California

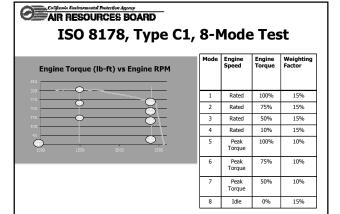
AIR RESOURCES BOARD

Introduction

- Engine dynamometer evaluation of Soy and Animal based biodiesel vs CARB diesel. Test fuels were: CARB Diesel, S20, 50, S100, A5, A20, and A100
- ISO 8178-C1, 8-mode, engine dynamometer test protocol was followed
- Test project is in support of ARB's Biodiesel Multi-Media Evaluation

2

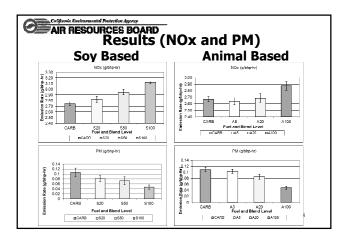


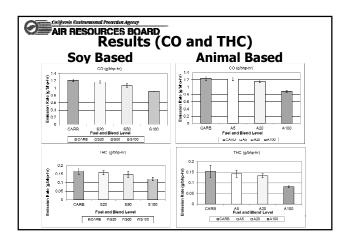

Fuel Test Sequence

Typical week of testing:

- •Two, 8-mode tests per day with a fuel change
- •Six replicates per fuel
- •Seven fuels (CARB-D, S20, S50, S100, A5, A50, A100)

CARB -1 (AM)		Soy 20 – 1 (AM)	l	Soy 50 – 1 (AM)	Soy 100 – 1 (AM)
Fuel Change	,/	Fuel Change		Fuel Change	Fuel Change
Soy 20 – 1 (PM)	•	Soy 50 – 1 (PM)	,	Soy 100 – 1 (PM)	CARB -1 (PM)




California Environmental Procedura Agency AIR RESOURCES BOARD Soy Based Biodiesel Test Results

Soy	Fuel	NOx (g/bhphr)	PM(g/bhphr)	CO (g/bhphr)	THC(g/bhphr)	CO2(g/bhphr)
Ave.	CARB	2.74	0.11	1.21	0.17	643.2
	S20	2.82	0.08	1.17	0.16	650.7
	S50	2.95	0.07	1.07	0.15	648.9
	S100	3.12	0.05	0.91	0.12	656.7
cov	CARB	1.8%	16.4%	3.0%	13.5%	0.9%
	S20	1.3%	14.8%	4.6%	10.0%	1.0%
	S50	2.0%	22.4%	4.6%	7.4%	0.1%
	S100	2.0%	19.7%	1.8%	5.5%	0.5%
% Diff.	S20	2.8%	-23.6%	-3.7%	-5.2%	0.7%
	S50	7.5%	-31.7%	-11.8%	-12.3%	0.9%
	S100	13.8%	-55.9%	-25.1%	-27.5%	2.1%

California Envirant	uental Protection Agency			
AIR RESC	DURCES BO	ARD		
Animal	Rased	Biodiesel	Test Results	:

Animal	Fuel	NOx (g/bhphr)	PM(g/bhphr)	CO (g/bhphr)	THC(g/bhphr)	CO2(g/bhphr)
Ave.	CARB	2.67	0.11	1.24	0.15	649.4
	A5	2.64	0.10	1.23	0.14	652.5
	A20	2.68	0.09	1.16	0.13	656.6
	A100	2.87	0.05	0.88	0.08	657.4
COV	CARB	1.41%	7.02%	4.82%	18.66%	1.13%
	A5	2.18%	6.33%	4.27%	11.75%	1.32%
	A20	2.39%	9.59%	3.15%	7.27%	1.01%
	A100	2.32%	9.74%	2.57%	5.27%	0.96%
% Diff.	A5	-1.0%	-5.6%	-1.3%	-7.9%	0.5%
	A20	0.7%	-21.8%	-7.0%	-13.6%	1.1%
	A100	7.6%	-55.4%	-29.5%	-47.1%	1.2%

Conclusions

- NOx increases were observed for both the Soy and Animal based fuels; however, the Animal based increases were smaller in magnitude than the Soy based fuel (7.6% vs 13.8% for A100 & S100, respectively).
- Significant PM emission reductions (~55%) were observed for both the S100 and A100 test fuels.
- Reductions in CO and THC were observed with all biodiesel fuel blends.
- Long term effects of various fuels were not evaluated in this study.

10

California Environmental Protection Agency
AIR RESOURCES BOARD

Acknowledgements

Special thanks to the staff at the Stockton lab for their hard work and dedication.

1

Other entities that supported this project:

- •John Deere
- •Western Power Products, Inc.
- •UC Davis